3.1.2 \(\int \log ^3(c (d+e x)) \, dx\) [2]

Optimal. Leaf size=61 \[ -6 x+\frac {6 (d+e x) \log (c (d+e x))}{e}-\frac {3 (d+e x) \log ^2(c (d+e x))}{e}+\frac {(d+e x) \log ^3(c (d+e x))}{e} \]

[Out]

-6*x+6*(e*x+d)*ln(c*(e*x+d))/e-3*(e*x+d)*ln(c*(e*x+d))^2/e+(e*x+d)*ln(c*(e*x+d))^3/e

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {2436, 2333, 2332} \begin {gather*} \frac {(d+e x) \log ^3(c (d+e x))}{e}-\frac {3 (d+e x) \log ^2(c (d+e x))}{e}+\frac {6 (d+e x) \log (c (d+e x))}{e}-6 x \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Log[c*(d + e*x)]^3,x]

[Out]

-6*x + (6*(d + e*x)*Log[c*(d + e*x)])/e - (3*(d + e*x)*Log[c*(d + e*x)]^2)/e + ((d + e*x)*Log[c*(d + e*x)]^3)/
e

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2333

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2436

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rubi steps

\begin {align*} \int \log ^3(c (d+e x)) \, dx &=\frac {\text {Subst}\left (\int \log ^3(c x) \, dx,x,d+e x\right )}{e}\\ &=\frac {(d+e x) \log ^3(c (d+e x))}{e}-\frac {3 \text {Subst}\left (\int \log ^2(c x) \, dx,x,d+e x\right )}{e}\\ &=-\frac {3 (d+e x) \log ^2(c (d+e x))}{e}+\frac {(d+e x) \log ^3(c (d+e x))}{e}+\frac {6 \text {Subst}(\int \log (c x) \, dx,x,d+e x)}{e}\\ &=-6 x+\frac {6 (d+e x) \log (c (d+e x))}{e}-\frac {3 (d+e x) \log ^2(c (d+e x))}{e}+\frac {(d+e x) \log ^3(c (d+e x))}{e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 57, normalized size = 0.93 \begin {gather*} \frac {-6 e x+6 (d+e x) \log (c (d+e x))-3 (d+e x) \log ^2(c (d+e x))+(d+e x) \log ^3(c (d+e x))}{e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(d + e*x)]^3,x]

[Out]

(-6*e*x + 6*(d + e*x)*Log[c*(d + e*x)] - 3*(d + e*x)*Log[c*(d + e*x)]^2 + (d + e*x)*Log[c*(d + e*x)]^3)/e

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 78, normalized size = 1.28

method result size
risch \(\frac {\left (e x +d \right ) \ln \left (c \left (e x +d \right )\right )^{3}}{e}-\frac {3 \left (e x +d \right ) \ln \left (c \left (e x +d \right )\right )^{2}}{e}+6 x \ln \left (c \left (e x +d \right )\right )-6 x +\frac {6 d \ln \left (e x +d \right )}{e}\) \(67\)
derivativedivides \(\frac {\left (c e x +c d \right ) \ln \left (c e x +c d \right )^{3}-3 \left (c e x +c d \right ) \ln \left (c e x +c d \right )^{2}+6 \left (c e x +c d \right ) \ln \left (c e x +c d \right )-6 c e x -6 c d}{c e}\) \(78\)
default \(\frac {\left (c e x +c d \right ) \ln \left (c e x +c d \right )^{3}-3 \left (c e x +c d \right ) \ln \left (c e x +c d \right )^{2}+6 \left (c e x +c d \right ) \ln \left (c e x +c d \right )-6 c e x -6 c d}{c e}\) \(78\)
norman \(x \ln \left (c \left (e x +d \right )\right )^{3}+\frac {d \ln \left (c \left (e x +d \right )\right )^{3}}{e}-6 x +6 x \ln \left (c \left (e x +d \right )\right )-3 x \ln \left (c \left (e x +d \right )\right )^{2}+\frac {6 d \ln \left (c \left (e x +d \right )\right )}{e}-\frac {3 d \ln \left (c \left (e x +d \right )\right )^{2}}{e}\) \(86\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(e*x+d))^3,x,method=_RETURNVERBOSE)

[Out]

1/c/e*((c*e*x+c*d)*ln(c*e*x+c*d)^3-3*(c*e*x+c*d)*ln(c*e*x+c*d)^2+6*(c*e*x+c*d)*ln(c*e*x+c*d)-6*c*e*x-6*c*d)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 134 vs. \(2 (64) = 128\).
time = 0.28, size = 134, normalized size = 2.20 \begin {gather*} 3 \, {\left (d e^{\left (-2\right )} \log \left (x e + d\right ) - x e^{\left (-1\right )}\right )} e \log \left ({\left (x e + d\right )} c\right )^{2} + x \log \left ({\left (x e + d\right )} c\right )^{3} - {\left (3 \, {\left (d \log \left (x e + d\right )^{2} - 2 \, x e + 2 \, d \log \left (x e + d\right )\right )} e^{\left (-2\right )} \log \left ({\left (x e + d\right )} c\right ) - {\left (d \log \left (x e + d\right )^{3} + 3 \, d \log \left (x e + d\right )^{2} - 6 \, x e + 6 \, d \log \left (x e + d\right )\right )} e^{\left (-2\right )}\right )} e \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(e*x+d))^3,x, algorithm="maxima")

[Out]

3*(d*e^(-2)*log(x*e + d) - x*e^(-1))*e*log((x*e + d)*c)^2 + x*log((x*e + d)*c)^3 - (3*(d*log(x*e + d)^2 - 2*x*
e + 2*d*log(x*e + d))*e^(-2)*log((x*e + d)*c) - (d*log(x*e + d)^3 + 3*d*log(x*e + d)^2 - 6*x*e + 6*d*log(x*e +
 d))*e^(-2))*e

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 66, normalized size = 1.08 \begin {gather*} {\left ({\left (x e + d\right )} \log \left (c x e + c d\right )^{3} - 3 \, {\left (x e + d\right )} \log \left (c x e + c d\right )^{2} - 6 \, x e + 6 \, {\left (x e + d\right )} \log \left (c x e + c d\right )\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(e*x+d))^3,x, algorithm="fricas")

[Out]

((x*e + d)*log(c*x*e + c*d)^3 - 3*(x*e + d)*log(c*x*e + c*d)^2 - 6*x*e + 6*(x*e + d)*log(c*x*e + c*d))*e^(-1)

________________________________________________________________________________________

Sympy [A]
time = 0.10, size = 68, normalized size = 1.11 \begin {gather*} - 6 e \left (- \frac {d \log {\left (d + e x \right )}}{e^{2}} + \frac {x}{e}\right ) + 6 x \log {\left (c \left (d + e x\right ) \right )} + \frac {\left (- 3 d - 3 e x\right ) \log {\left (c \left (d + e x\right ) \right )}^{2}}{e} + \frac {\left (d + e x\right ) \log {\left (c \left (d + e x\right ) \right )}^{3}}{e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(e*x+d))**3,x)

[Out]

-6*e*(-d*log(d + e*x)/e**2 + x/e) + 6*x*log(c*(d + e*x)) + (-3*d - 3*e*x)*log(c*(d + e*x))**2/e + (d + e*x)*lo
g(c*(d + e*x))**3/e

________________________________________________________________________________________

Giac [A]
time = 3.68, size = 71, normalized size = 1.16 \begin {gather*} {\left (x e + d\right )} e^{\left (-1\right )} \log \left ({\left (x e + d\right )} c\right )^{3} - 3 \, {\left (x e + d\right )} e^{\left (-1\right )} \log \left ({\left (x e + d\right )} c\right )^{2} + 6 \, {\left (x e + d\right )} e^{\left (-1\right )} \log \left ({\left (x e + d\right )} c\right ) - 6 \, {\left (x e + d\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(e*x+d))^3,x, algorithm="giac")

[Out]

(x*e + d)*e^(-1)*log((x*e + d)*c)^3 - 3*(x*e + d)*e^(-1)*log((x*e + d)*c)^2 + 6*(x*e + d)*e^(-1)*log((x*e + d)
*c) - 6*(x*e + d)*e^(-1)

________________________________________________________________________________________

Mupad [B]
time = 0.24, size = 88, normalized size = 1.44 \begin {gather*} 6\,x\,\ln \left (c\,d+c\,e\,x\right )-6\,x-3\,x\,{\ln \left (c\,d+c\,e\,x\right )}^2+x\,{\ln \left (c\,d+c\,e\,x\right )}^3-\frac {3\,d\,{\ln \left (c\,d+c\,e\,x\right )}^2}{e}+\frac {d\,{\ln \left (c\,d+c\,e\,x\right )}^3}{e}+\frac {6\,d\,\ln \left (d+e\,x\right )}{e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(c*(d + e*x))^3,x)

[Out]

6*x*log(c*d + c*e*x) - 6*x - 3*x*log(c*d + c*e*x)^2 + x*log(c*d + c*e*x)^3 - (3*d*log(c*d + c*e*x)^2)/e + (d*l
og(c*d + c*e*x)^3)/e + (6*d*log(d + e*x))/e

________________________________________________________________________________________